Answer Key for Challenge Problems

Challenge 1 - Working with Geographic Coordinates

Problem1
A) New York City, Statue of Liberty: 74.04465 West 40.6893 North
B) Kennedy Space Center: 80.6817 West, 28.5235 North
C) Golden Gate Bridge: 122:28:41.9 West 37:49:7.7 North,
D) Chaco Canyon Ruins : 107:57:22.0 West 36:05:53 North

Problem 2

A) Latitude $35^{\circ}: 28^{\prime}: 15.5^{\prime \prime}$
B) Longitude $115^{\circ}: 15^{\prime}: 33.2^{\prime \prime}$

Problem 3 - Convert all coordinates to decimal degrees to get Washington (38.905 ${ }^{\circ}$, 77.037°) and Portland (45.544, 122.654). Find the mid-point between the Latitudes: $(38.905+45.544) / 2=42.225$ or $42^{\circ}: 13^{\prime}: 30^{\prime \prime}$ North. Find the mid-point between the longitudes: $(77.037+122.654) / 2=99.846$ or $99^{\circ}: 50^{\prime}: 46$ " West. The location of the mid-way station is at ($42^{\circ}: 13^{\prime}: 30^{\prime \prime}$ North $, 99^{\circ}: 50^{\prime}: 46^{\prime \prime}$ West $)$. This is 35 miles south of Ainsworth, Nebraska!

Problem 4
A) Convert to decimal degrees and subtract them: $39.84-41.12=1.28^{\circ}$.
B) A full 360-degree great circle has a circumference of $40,000 \mathrm{~km}$, so 1.28° corresponds to $40000(1.28 / 360)=142$ kilometers.

Problem 5
A) Convert to decimal degrees and subtract them: $101.71-94.64=7.07 \mathrm{o}$.
B) 7.07° corresponds to $7.07^{*} 86=608$ kilometers.
C) $7.07 \times 38=269$ kilometers or less than half the distance!

Challenge 2-X Marks the Spot

Problem 1

Intersection near Longitude 89.27West, 37.64 North.
Problem 2 - About 10 kilometers southwest of Carbondale.

Challenge 3-X Marks the Spot

Eclipse Date	Eqn for 2017	Eqn for Eclipse	Crossing Point	
			Longitude	Latitude
March 27, 1503	$\mathrm{y}=-0.0647 \mathrm{x}+$	$\mathrm{y}=+0.1557 \mathrm{x}+$	-120.1397	44.640
	36.8672	63.3460	-84.3826	35.479
July 20, 1506	$\mathrm{y}=-0.4728 \mathrm{x}-4.4130$	$\mathrm{y}=+0.2608 \mathrm{x}+$		
		57.4857	-120.229	44.647
February 3, 1562	$\mathrm{y}=-0.0660 \mathrm{x}+$	$\mathrm{y}=+0.5038 \mathrm{x}+$		
	36.7095	105.2234	-116.192	44.304
July 21, 1618	$\mathrm{y}=-0.0980 \mathrm{x}+$	$\mathrm{y}=-0.3112 \mathrm{x}+$		
	32.9103	8.1419	-82.306	34.473
October 23, 1623	$\mathrm{Y}=-0.4960 \mathrm{x}-$	$\mathrm{Y}=+0.1808 \mathrm{x}+$		
	6.3555	49.3526	-104.899	42.525
April 10, 1679	$\mathrm{Y}=-0.2165 \mathrm{x}+$	$\mathrm{Y}=+0.4931 \mathrm{x}+$		
	19.8103	94.2527		

May 22, 1724	$\mathrm{Y}=-0.1932 \mathrm{x}+$ 22.2864	$\mathrm{Y}=+0.6949 \mathrm{x}+$ 116.9709	-106.622	42.880
June 24, 1778	$\mathrm{Y}=-0.5030 \mathrm{x}-6.9270$	$\mathrm{Y}=+0.4459 \mathrm{x}+$ 70.7603	-81.8694	34.256
June 16, 1806	$\mathrm{Y}=-0.3496 \mathrm{x}+$ 6.5846	$\mathrm{Y}=+0.2676 \mathrm{x}+$ 64.5303	-93.8733	39.406
November 30, 1834	$\mathrm{Y}=-0.2231 \mathrm{x}+$ 19.1221	$\mathrm{Y}=-0.7248 \mathrm{x}-$ 33.1709	-104.233	42.378
July 29, 1878	$\mathrm{Y}=-0.2911 \mathrm{x}+$ 11.4790	$\mathrm{Y}=-0.8411 \mathrm{x}-$ 48.905	-109.789	43.446
January 1, 1889	$\mathrm{Y}=-0.1598 \mathrm{x}+$ 25.8940	$\mathrm{Y}=+0.4636 \mathrm{x}+$ 95.5417	-111.717	43.752
May 28, 1900	$\mathrm{Y}=-0.4978 \mathrm{x}-6.503$	$\mathrm{Y}=+0.4699 \mathrm{x}+$ 72.5603	-81.6964	34.1694
June 8, 1918	$\mathrm{Y}=-0.0954 \mathrm{x}+$ 33.2274	$\mathrm{Y}=-0.3598 \mathrm{x}+$ 2.4180	-116.48	44.3338
March 7, 1970	$\mathrm{Y}=-0.5105 \mathrm{x}-$ 7.5342	$\mathrm{Y}=+0.8788 \mathrm{x}+$ 103.7412	-80.0959	33.3539
April 8, 2024	$\mathrm{Y}=-0.4129 \mathrm{x}+0.787$	$\mathrm{Y}=+0.616 \mathrm{x}+$ 92.6308	-89.2655	37.6433
May 11, 2078	$\mathrm{Y}=-0.5024 \mathrm{x}-$ 6.8741	$\mathrm{Y}=+0.3681 \mathrm{x}+$ 64.1946	-81.6446	34.1432

Challenge 4 - X Marks the Spot with Quadratic Equations

Problem 1

Date	Fitting function	Crossing Point	
		Longitude (${ }^{\circ}$ " "West)	Latitude (${ }^{\text {، " " North) }}$
August 21, 2017	$\begin{aligned} & y=-0.005792 x^{2}+1.4425 x- \\ & 44.968 \end{aligned}$	$89 \quad 1638$	373856
March 27, 1503	$\begin{aligned} & y=-0.00441 x^{2}+0.8998 x+ \\ & 0.1113 \end{aligned}$	1191915	444120
July 20, 1506	$\begin{aligned} & y=-0.003139 x^{2}+0.2726 x+ \\ & 34.776 \end{aligned}$	$84 \quad 1555$	$35 \quad 2728$
February 3, 1562	$\begin{aligned} & y=0.029785 x^{2}-7.6792 x+ \\ & 537.25 \end{aligned}$	1195207	444312
July 21, 1618	$\begin{aligned} & y=-0.009871 x^{2}+2.6021 x- \\ & 124.7 \end{aligned}$	1162956	442821
October 23, 1623	$\begin{aligned} & y=0.005971 x^{2}-1.1966 x+ \\ & 92.538 \end{aligned}$	$82 \quad 25 \quad 29$	343447
April 10, 1679	$\begin{aligned} & y=-0.00392 x^{2}+0.3425 x+ \\ & 49.689 \end{aligned}$	1044240	423418

May 22, 1724	$y=-0.00729 x^{2}+0.8719 x+32.78$	1062913	425740
June 24, 1778	$y=-0.005793 x^{2}+0.5098 x+31.2$	813924	341206
June 16, 1806	$\begin{aligned} & y=-0.00508 x^{2}+0.6976 x+ \\ & 18.627 \end{aligned}$	934648	392215
$\begin{aligned} & \text { November 30, } \\ & 1834 \end{aligned}$	$y=0.01238 x^{2}-1.8789 x+103.4$	1050357	423909
July 29, 1878	$y=0.000486 x^{2}+0.7316 x-42.9$	1101455	$43 \quad 3955$
January 1, 1889	$y=0.00328 x^{2}-1.1774 x+134.37$	1113027	435151
May 28, 1900	$y=-0.00147 x^{2}-0.2253 x+62.33$	813459	34954
June 8, 1918	$y=-0.00192 x^{2}+0.8297 x-26.41$	1172736	443324
March 7, 1970	$y=-0.0142 x^{2}+1.394 x+12.72$	795951	$\begin{array}{llll}33 & 21 & 43\end{array}$
April 8, 2024	$\begin{aligned} & y=-0.012722 x^{2}+1.6454 x- \\ & 7.8473 \end{aligned}$	891638	373858
May 11, 2078	$y=-0.0119 x^{2}+1.5792 x-15.458$	813535	341013

Challenge 5 - Estimating the speed of the lunar shadow

Problem 1 - Speed $=232 \mathrm{~km} / 0.0619$ hours $=3750 \mathrm{~km} / \mathrm{hr}$
Problem 2 - Convert the times to decimal hours to get Carbondale: 18.3656 hours and Hopkinsville: 18.4342 hours. The time difference is then 0.069 hours. The speed is then Speed $=155 \mathrm{~km} / 0.069$ hours $=2450 \mathrm{~km} / \mathrm{hr}$

Problem 3 -

	Latitude	Longitude	Time	Distance $(\mathbf{k m})$	Speed $\mathbf{(k m / h)}$
Newport	44.8	-124.0	$17: 16: 58$	0	
Madras	44.7	-121.1	$17: 20: 41$	232	3750
Weiser	44.4	-117.0	$17: 26: 21$	328	3480
Idaho Falls	43.8	-111.9	$17: 34: 14$	417	3170
Riverton	43.2	-108.2	$17: 40: 24$	301	2930
Casper	42.8	-106.3	$17: 43: 51$	161	2800
Stapleton	41.5	-100.5	$17: 55: 21$	507	2650
St Joseph	39.8	-94.9	$18: 07: 45$	512	2480
Columbia	38.8	-92.3	$18: 13: 57$	247	2390
Carbondale	37.6	-89.1	$18: 21: 56$	313	2360
Hopkinsville	36.9	-87.5	$18: 26: 03$	161	2340
Anderson	34.6	-82.6	$18: 39: 12$	511	2330
Columbia	33.9	-81.1	$18: 43: 10$	156	2370
McClellanville	33.1	-79.5	$18: 47: 30$	172	2380

Worked example: Between Weiser and Idaho Falls, the distance is 417 kilometers, and the time difference is $(17: 34: 14-17: 26: 21)=17.5706-17.4392=0.1314$ hours, so speed $=417 \mathrm{~km} / 0.1314 \mathrm{~h}=3173 \mathrm{~km} / \mathrm{hr}$, which rounded to three significant figures becomes 3170 km/hr.

Problem 4 - Add up the distances in column 5 to get 4019 kilometers.
Problem 5 - At Newport, totality starts at 17:16:58 and at McClellanville it starts at 18:47:30, a difference in time of $18.7917-17.2828$ or 1.51 hours. The average speed is then $4019 \mathrm{~km} / 1.51$ hours $=2661 \mathrm{~km} /$ hour, and rounded to three significant figures this becomes 2660 km/hr.

Challenge 6 - As the crow flies on a spherical planet

Problem 1 - Lat1 = 44.8439 Long1 = 124.051 Lat2= 33.0354 Long2 = 79.4869

Then
$\cos (X)=\sin (44.8439) \sin (33.0354)+\cos (44.8439) \cos (33.0354) \cos (124.051-79.4869)$
$\cos (X)=0.7052 \times 0.5452+0.7090 \times 0.8383 \times 0.7125$
$\cos (X)=0.8079$
So $X=36.1^{\circ}$ and the distance is then $40000(36.1 / 360)=4,011$ kilometers.

Problem 2 - lat1 $=38.9$ long1 $=77.05$ lat2=34.00 long2=81.05
Then
$\cos (X)=\sin (38.9) \sin (34.0)+\cos (38.9) \cos (34.0) \cos (81.05-77.05)$
$\cos (X)=0.628 \times 0.559+0.778 \times 0.829 \times 0.998$
$\cos (X)=0.995$
so $X=5.9^{\circ}$ and so the distance is $40000 \times(5.9 / 360)=660$ kilometers.

Challenge 7 - Exploring the lunar shadow cone.

Problem 1 - The sun is 151.39 million km from the center of Earth and the moon is $372,027 \mathrm{~km}$ from the center of Earth, so the distance from the center of the sun to the center of the moon is $151,390,000-372,000=151,018,000 \mathrm{~km}$, then

Now the moon is $372,027 \mathrm{~km}$ sunwards of the Earth's center (USNO), so the vertex of the shadow cone is $377,700-372,027=5,673 \mathrm{~km}$ (to 4-SF) from the center of Earth opposite the sun or 6378-5673 $=705 \mathrm{~km}$ below the surface of Earth!

Problem 2 -

$X=\frac{228,000,000(25)}{696,---------------------300-25}$
$X=8,186 \mathrm{~km}$.

The vertex of the shadow cone is located $9300-8186=1,114 \mathrm{~km}$ from the center of Mars. The radius of Mars is $3,396 \mathrm{~km}$, so the vertex is located $3,396-1,114=2,282 \mathrm{~km}$ below the surface of Mars.

Challenge 8 - Exploring angular diameter

Problem 1 Angular diameter $=206265 \times 1392600 / 151384000=1897$ arcseconds .
Problem 2 Angular diameter $=206265 \times 3474 / 365600=1960$ arcseconds.
Problem 3-Angular diameter $=206265$ * 3474/377,700 = 1897 arcseconds.
This is the same as the angular diameter of the sun, and so at the vertex the disk of the moon exactly covers the disk of the sun for a total solar eclipse. At the surface of Earth, however, the angular diameter of the moon is 37 arcseconds smaller than the sun, so the dark lunar disk will not appear to fully cover the sun.

Challenge 9 - Lunar shadow size on Earth's surface

Problem 1 The diameter is about 110 km , so it will take $110 \mathrm{~km} /(2600 \mathrm{k} / \mathrm{h})=0.042$ hours or about 2.5 minutes from start to finish. After that time, the limb of the sun will brighten enormously and darkness will become daylight again. This does not leave much time for photographers to set up their equipment correctly and snap a few pictures!

$$
\text { Problem } 2 \quad \mathrm{H}=(8186-9300+3396) 3396 / 8186=946 \mathrm{~km}!
$$

Because of the scattering of light in the dusty Martian atmosphere, a dark spot with this diameter would not be visible. Also, the diameter of Phobos would appear to be significantly smaller than the sun so there would be no total solar eclipse.

Challenge 10 - Shadow speed and Earth's rotation

Problem 1 The Surface is moving eastward at a speed of $1674 \cos (42.8)=1228$ $\mathrm{km} / \mathrm{hr}$ so the true shadow speed is $2,800+1,200=4,000 \mathrm{~km} / \mathrm{hr}$.

Problem 2

A) Vrot $=1674 \cos (19)=1600 \mathrm{~km} / \mathrm{h}$. True speed $=2,200 \mathrm{~km} / \mathrm{h}+1600 \mathrm{~km} / \mathrm{h}=3,800$ km / h. The speed relative to the Concorde, which is sharing Earth's rotation, is just $2,200 \mathrm{~km} / \mathrm{h}-2,100 \mathrm{~km} / \mathrm{h}=100 \mathrm{~km} / \mathrm{h}$.
B) Total duration of the eclipse was about $250 \mathrm{~km} /(100 \mathrm{~km} / \mathrm{h})=2.5$ hours. If you were on the ground, the maximum duration would have only been about 7 minutes! The actual time the astronomers were able to get after meeting up with the shadow and maneuvering to keep pace with it was about 1.5 hours!

Challenge 11 - Modeling Shadow Speed, Diameter and Duration along the Path of Totality

Problem 1
A) Use the Quadratic Formula to determine the roots of the equation.

We see, at once that the discriminant $\mathbf{b}^{2}-4 \mathbf{a c}$ is negative so there are no crossing points where V is less than zero.
B) This is a parabolic curve that opens upwards and has a vertex at $L=-b / 2 a=-$ $179 /\left(2^{*} 1.06\right)=-84.4$, which is longitude 84.4 West. The point on the path of totality with this longitude has a latitude of 35.53 North and is located 90 kilometers northeast
of Chattanooga, Tennessee. The speed there is found from the formula for V as 1.06 (-$84.4)^{2}+179(-84.4)+9900=2,400 \mathrm{~km} / \mathrm{hr}$.

Problem 2

A) This is a parabola that opens downwards so its vertex is a maximum value for $D(L)$. The discriminant $b^{2}-4 a c$ is negative so there are no longitudes for which the shadow diameter is zero.
B) The vertex is located at $L=-b / 2 a=-79.8$ and has a maximum value of 114.7 kilometers.

Problem 3

A) Time $=$ distance/speed so

B) See below

The eclipse will last about 2 minutes and 54 seconds near a longitude of -85 . This is a location near Crossville, Tennessee.

Note: The actual location of maximum duration is 240 km northwest near Hopkinsville, IL (longitude -87.6) where the maximum duration is 2 minutes 40
seconds. The shape of the shadow is elliptical and so the actual function $D(L)$ is more complicated than the one used, which overestimates the size of the shadow leading to longer eclipse times. A 10\% change in the shadow diameter reduces the time by about 15 seconds, and moves the location of maximum eclipse further west towards Hopkinsville.

Challenge 12-A Physics-based Model for Estimating the Shadow Ground Speed

Problem 1

Location	Latitude (L)	Actual speed	Predicted	Difference
Madras, OR	44.7	3,750	2,380	1,370
Casper, WY	42.8	2,800	2,340	460
Carbondale, IL	37.6	2,350	2,240	110
McClellanville, SC	33.0	2,400	2,160	240

Answer B) The farther you are from the Atlantic Coast along the path, the more the model seems to underestimate the shadow speed. The differences vary from a high of 37% on the Pacific Coast to a low of 5\% towards the Atlantic Coast. As a model, it matches the data to better than 15% east of Casper, Wyoming.

Problem 2

Location	Latitude	\square	Obs. Speed	Predicted	Difference
Madras, OR	44.7	34°	3,750	2,870	880
Casper, WY	42.8	23°	2,800	2,540	260
Carbondale, IL	37.6	9°	2,350	2,270	80
McClellanville, SC	33.0	0°	2,400	2,160	240

We see that the differences now range from 23% near Madras, to a maximum of 9% east of Casper. This is a significant improvement, but we still have the trend that points farther to the west of McClellanville are underestimating the speed.

Problem 3

Location	Latitude	\square	Elev	Obs	Predicted	Difference
Madras, OR	44.7	34°	42°	3,750	4,290	-540
Casper, WY	42.8	23°	54°	2,800	3,140	-340
Carbondale, IL	37.6	9°	64°	2,350	2,610	-260
McClellanville, SC	33.0	0°	61°	2,400	2,470	70

The predictions are now larger than the actual measurements and vary from 14% in Madras to 3\% in McClellanville.

Challenge 13 - The last total solar eclipse on Earth

Problem 1
Answer: A) $\theta=206265 \times(1,392,000 / 149,000,000)=1927$ arcseconds
B) 1927 arcseconds $\times(1$ degree $/ 3600$ arcseconds $)=0.5$ degrees

Problem $20.0073(4.5)^{2}-0.028(4.5)+0.98=1.00$.

Problem 3

$$
\begin{aligned}
& 1392000\left(0.0073 \mathrm{~T}^{2}-0.028 \mathrm{~T}+0.98\right) \\
& \theta(\mathrm{T})=206265 \\
& \text { Distance to the sun in kilometers }
\end{aligned}
$$

Problem 4-In 1 billion years, the distance traveled will be $3.8 \mathrm{~cm} / \mathrm{yr} \times 1$ billion years x $(1 \mathrm{~km} / 100000 \mathrm{~cm})=38,000 \mathrm{~km}$, so the rate of increase is $38,000 \mathrm{~km} / \mathrm{billion}$ years. The current distance ($T=4.5$) is $356,400 \mathrm{~km}$, so the formula would be $\mathrm{D}=38,000 \mathrm{~T}$ $+185,400 \mathrm{~km}$ where T is the time in billions of years.

Problem 5 -

$$
\theta(\mathrm{T})=206265 \begin{aligned}
& 3,474 \\
& \\
& 38000 \mathrm{-} \mathrm{~T}+---------------185,400
\end{aligned}
$$

Problem 6

Answer: The two functions cross at an age of about 4.75 billion years, which is 250 million years from today!

Challenge 14 - The View from Mars: A matter of time

Problem 1 - A Martian day is 24 h 39.6 minutes long by Earth time-keeping, which in decimal value is equal to 24.66 so that means that a Martian hour is equal to $24.66 / 24=$ 1.02749 Earth hours, and also that a Martian minute equals 1.02749 Earth minutes. In other words, a Martian minute equals about 62 Earth seconds.

Problem 2 - (August $30-$ August 6$)=24$ Earth Days. Since 1 Sol equals 1.02749 Earth days, that means 24 Earth days is the same as $24 / 1.02749=$ Sol 23 on the Curiosity calendar.

Problem 3 - First calculate the number of Earth days between August 6, 2012 and August 21, 2017 including leap-days. You can use an online calculator to compute this, for instance, http://www.timeanddate.com/date/duration.html. The answer is 1842 Earth days. Next convert Earth days to Sols: Sols $=1842 / 1.02749=1792$, so the Eclipse will happen on Sol 1792 at the Curiosity lander.

Problem 4 - First calculate the number of Earth days between August 6, 2012 and August 21, 2017 including leap-days. You can use an online calculator to compute this, for instance, http://www.timeanddate.com/date/duration.html. The answer is 1842 Earth days. Next convert Earth days to Sols: Sols = 1842/1.02749 = 1792, so the Eclipse will happen on Sol 1792 at the Curiosity lander.

Challenge 15 - Angular Size and the Earth-Moon System

Problem 1 It would appear in the sky to have an angular diameter of 1.9 degrees.
Problem 2 The moon has a diameter of only 0.5 degrees, so Earth is about 4 times bigger in the sky as viewed from our moon!

Problem 3

Object 1	r	$X+D$
------------------------------	-	
Object 2	R	X

Problem 4

Problem 5
Earth: $57.29 \begin{aligned} & 12,700 \\ & -------- \\ & 200,000\end{aligned}=3.6$ degrees

3,500
Moon: 57.29 ---------- $\quad 25$ degrees

The ratio of their diameters was about $25 / 3.6$ or about 7 to 1 . This matches the apparent diameters seen in the photo.

Problem 6

A) $\quad X=150$ million -40 million $=110$ million from sun to Venus

B) $\quad D=225$ million -150 million $=75$ million $k m$ from Earth to Mars

Earth	12,700	150 million +75 million
-- $=0.027$		
Sun	1.4 million	75 million

So from Mars, Earth will appear as a black dot on the face of the sun that is more than twice as big as Venus appeared during the 2012 Transit of Venus!

Problem 7

$$
\begin{array}{rl}
1 & 1750 \\
---- & =------ \\
2.9 & 6378 \\
1.6 \text { million }+ \text { D } \\
1.6 \text { million }
\end{array}
$$

Problem 8

The apparent diameter ratio of Phobos to the sun is $12: 20$ so

$X=6,700$ kilometers.

