
A Physics-based Model for Estimating the 
Shadow Ground Speed 

 
 
Although we can measure the speed of the lunar shadow on the ground and use this to 

create a function that predicts the speed from the observer’s longitude (see Problem Set 

11) from V(L) = 1.06L2 +179 L +9900, this is an empirical model that dies not explain 

why the coefficients are as shown. We merely ‘fit’ a quadratic function to the data points 

and then use this function to interpolate to other longitudes.  What we would really like 

to do is to understand the motion of the moon, Earth and sun, and use this to create a 

new function that explains the form of the equation in relation to physical parameters 

like distance, speed and time. The common thing to do is to take a step-by-step 

approach and each time add an improvement to the previous understanding by 

considering additional physical factors. 

 

Version 1.0.   The shadow speed on the ground is related to the true speed of the 

shadow, which is just the speed of the moon in its orbit, reduced by the rotational speed 

of Earth at the location of the shadow. At the time of the eclipse, the orbital speed of the 

moon is 3,873 km/h. The rotation speed is just Vrot=1674cos(latitude). 

 

But because the Earth is also in motion we have to allow for this. First, Earth moves 

around its barycenter: 

 

At the time of the eclipse, the distance between the center of Earth and moon is 

372,000 km. The mass of Earth and moon balance at the barycenter. The mass of the 

moon is 0.0123Mearth, so the distance from the center of Earth to the barycenter is just 

d = 372000 x (0.0123/1.0123) = 4520 km, and for the moon it is 372000-4520 = 367,480 

km.  Now these bodies orbit the barycenter counterclockwise and we can calculate their 

speeds for a lunar sidereal month of 27.3 days, so for Earth we get Vb=2 4520km 

/(27.3 x 23.933) = 43 km/hr. 

 

Next, Earth moves in its orbit around the sun during the time of the eclipse. This means 

that the position of the sun changes slightly and this changes the movement of the 

shadow. As seen from the sun, during the 1 hour that the shadow sweeps across the 

United States, the Earth-moon system  defined by its barycenter moves in its orbit.  

  

                          360 degrees 

Angle  =  --------------------------        =   0.0412 degrees/hour.   

                    365 days x 23.93h/d 



 

This slight angular shift, when projected to the surface of Earth located (372,000 km – 

6378 km) = 365,600 km from the center of the moon corresponds to a distance  (using 

the skinny-triangle approximation) of  d = 0.0412/57.3 x 365,600 km = 263 kilometers 

each hour. So as seen from the surface of Earth, the solar ‘light source’ behind the 

moon shifts by 263 km/hr in a direction from east to west on the day-side of Earth, as 

Earth orbits the sun counterclockwise. Correcting for this motion we have to subtract 

263 km/hr from the lunar shadow speed. 

 

 Shadow speed = 3,873 km/h –43 km/h – 263 km/h - 1674cos(latitude)  

       Vs(L) = 3567 – 1674cos(L) 
 
 
Problem 1 –  The measured shadow speeds at three locations along the path of totality 

are given in the table below. A) From our function Vs(L), what would we predict as the 

shadow speeds at these latitudes? B) What pattern do you see in the differences? 

 

Location Latitude (L) Actual speed Predicted Difference 

Madras, OR 44.7 3,750   

Casper, WY 42.8 2,800   

Carbondale, IL 37.6 2,350   

McClellanville, SC 33.0 2,400   

 
 
 

Version 2.0.  Our first version was actually pretty successful over much of its range! 

But let’s see if we can’t improve it. One thing we notice is that the path of the eclipse is 
tilted at about 23o to lines of longitude, so the speed of Earth’s rotation along the line of 
totality is given by the geometry: 
 



                 
 
The West-East rotation speed V(rot) is drawn along the hypotenuse of the triangle, the 
component of this speed along the track is just  
 
V(track)=V(rot)cos(23) so  
Vs(L) = cos(23) x (3567 – 1674cos(L)) 
 
This reduces all of  our predicted speeds by cos(23) = 0.92. Unfortunately, when we 

compute our predictions for the above table. We are underestimating the speeds even 

more than before by an additional 8%. Nevertheless, we still have to include this factor 

geometric factor in our models. 

 
 

Version 3.0. How do we calculate the shadow speed in our data? We do this by 

timing how long it takes the moon’s shadow to pass over our location. But we know from 
Problem 11 that the shadow diameter changes all along the path of totality from just 
under 100 km in Oregon to nearly 115 km in South Carolina. That’s a 15% change! The 
problem is geometric distortion. Here is a sketch of what things look like. 
 



 
 
 
The moon’s shadow doesn’t know anything about the curvature of the screen that it is 
being projected upon. All it knows is that the vertex of its shadow wants to travel 
through space parallel to the moon’s orbit at that time, which is basically a straight line 
in space.  The shadow is moving parallel to the tangent line AB at the time of the 
eclipse, and the dark spot is being projected onto the arc FC. Only close-by point C do 
we get an undistorted view of the lunar shadow, which looks like a circle. As we move to 
the left (west) or east (right) of this spot, the shadow turns into an ellipse. 
 
On the tangent plane (AB) the length of the segment GC is defined by x measured from 
the origin at the tangent point C, and this is the same as the length of the segment FE.   
 
The distance along the surface of Earth (DC=R=6378 km) represented by the arc FC is 

just L = 2 R x /360, where  = m|FC| is the measure of the arc in degrees.   
 

The segment FE has a length defined by Rsin() where = m|FC|.   
 

From this we see that x = Rsin()  and L=2R/360  and so  with a little algebra  = 

360L/2R  and by substitution, x = Rsin(360L/2R).  
 
So, from a knowledge of how far you are, L, from the midpoint of the track of Totality, 
you can figure out where you are located in the tangent plane in terms of the linear 
variable x. 



For example, the location of the path on the Oregon coast at First Contact is about 2000 

km from the midpoint. The arc has an angular measure of 360*(2000/2x6378) = 18 
degrees. Then from x=Rsin(18) we get x = 1970 km.  
 
The speed we measure on the ground is the surface speed of the shadow, but what we 
really have is information about the speed of the shadow in the tangent plane along AB 

in the figure.  The relationship between these is just V(tangent) = cos() V(surface). 
 

At the tangent point, =0  in South Carolina, and V(tangent) = V(surface) but at the 

initial point on the Oregon coast where  = 36o, we have  V(tangent) = 
cos(36)V(surface)  so the tangent speed is only 81% of the surface speed. Alternatively, 
the surface speed is 1.24 times faster than the tangent speed. 
 
So,  our previous model Vs = cos(23) [ 3567 – 1674cos(L) ]   is actually describing the 

tangent speed. To convert it into the surface speed we divide by cos() where  is the 

angle along the path of totality from McClellenville (=0) to our observation spot. 
 
 

Problem 2 -  Use the new model for the surface speed to calculate the predicted 

speeds and their differences with the actual speeds. What is the range of percentage 
differences relative to the actual speeds? 
 

   Vs = cos(23) [ 3567 – 1674cos(L) ] / cos() 
 

Location Latitude  Obs. Speed Predicted Difference 

Madras, OR 44.7 34o 3,750   

Casper, WY 42.8 23o 2,800   

Carbondale, IL 37.6 9o 2,350   

McClellanville, SC 33.0 0o 2,400   

 
 
 

Version 4.0.  Our model would work if the lunar shadow were perpendicular to the 

surface of Earth, but in fact the eclipses at the various locations are viewing the sun and 
moon at different elevations above the horizon. This causes a second distortion to the 
shape of the lunar shadow. From geometry, the diameter of the shadow will be its 
circular diameter divided by sin(elevation). As the sun and moon are lower towards the 
horizon, the shadow becomes elongated. 
 

  Vs = cos(23) [ 3567 – 1674cos(L) ] / [cos() sin(elev)] 
 
 

Problem 3 – Recalculate the predictions with this new factor included. How do the 

percentage changes vary along the eclipse track? 
 



Location Latitude  Elev Obs Predicted Difference 

Madras, OR 44.7 34o 42o 3,750   

Casper, WY 42.8 23o 54o 2,800   

Carbondale, IL 37.6 9o 64o 2,350   

McClellanville, SC 33.0 0o 61o 2,400   

 
 
 

Version 5.0 - In Version 3.0 we corrected for the difference between the tangent 

speed and the surface speed, but we still have to look at the change in the lunar 
shadow diameter.  Recall from the above figure that along the tangent plane: 
 

Y = R – Rcos() 
 
The difference between Oregon and SC is 36 degrees, so compared to SC, the shadow 
is located  
 
Y = 6378(1-cos(36)) = 1218 km  below the tangent plane at SC. 
X = 2x1970 = 3940 km along tangent plane from SC 
 
 
The radius of the moon shadow on Earth’s surface tangent plane over North America is 
found from the proportion: 
 
 
    1737                     H 
-----------   =    ----------------- 
377,700            (5673+6378-1218) 
 
 
          (5673+6378-1218) 1737 
H =    ----------------------------------         =   49.8 km radius  or 99 km diameter  
                  377,700    
 
The predicted and actual shadow diameters match almost exactly: 99 vs 99.7 km in 
Oregon and 115 vs 110 in SC.  
 
Now the eclipse midpoint time is the time needed for the shadow to travel its own 
diameter along the surface. That depends on the speed of the shadow and its diameter. 
So the midpoint times include information about the shadow width along the track.  
 
So….we correct the speeds for a function that depends on the shadow diameter. 
 

Create geometric function x() = 57.5/H() 
 
 



Where H() =           (5673+6378-6378(1-cos())) 1737 
                                 -------------------------------------------  
                                                 377,700    
 
 

H() =   0.0046 (12051 – 6378(1-cos())) 
 
 

Actual = (differential ground speed from midpoints) x  X()  

Where X() = 57.5/(0.0046(12051-6378(1-cos())) 
 
The dependence of this differential speed measurement on the lunar distance is as 
follows: 
 
Speeds: 
Earth rotation   =  1674cos(latitude)  km/h 
Moon = 3873    km/h 
Barycenter = 43  km/h 
Solar = 273   km/h 
 

Where: X() = 57.5/(0.0046(12051-6378(1-cos()))     (Note:   0.0046 = 1737/377600)   
 
S = cos(23)(Moon speed – Earth rot – barycenter – solar)  X(D) 
 
                                       115/2 [ 377,600 ] 
X(D) =         ------------------------------------------------------------------ 

                      1737[    (377,600 – D) +6378 -6378(1-cos()  ] 
 
 
RX =  d ((151,390,000-D) + X) 
 
X = d(151390000-D)/(R-d)   = shadow cone length = 377,600 km 
 
So: 
 
                                        115/2 [ d(151390000-D)/(R-d) ] 
X(D) =         ------------------------------------------------------------------------------ 

                    1737(  [d/(R-d)][(151390000-D) – D +6378cos()  ] 
 
 

 = angle along path of totality 
R = 696,300 km and  
d = 1737 km 
 
 
 



                         8.27x10-5(151390000-D)    
X(D) =   --------------------------------------------------- 

                     378475 -1.0025D + 6378cos() 
 
 

Example: for D = 372,000         = 34.1 
 
X =   12489 / [ 5455+ 5287]    =    1.14 
 
So: 
                                                 (Moon speed – Earth rot – barycenter – solar) (151390000-D) 
Speed  = cos(23) x 8.27x10

-5
 ----------------------------------------------------------------------------  

                                                        378475 – 1.0025D + 6378cos  

 
 
And for the speeds: 
Earth =  1674cos(latitude) 
Moon = 3873 
Barycenter = 43 
Solar = 273 
 
We have: 
 
                                                 (3557 – 1674cos(Lat)) (151390000) 
Speed  =     cos(23)6.61 x10-5 -------------------------------------------------  

                                                        378475 – 1.0025D + 6378cos  
 
Where we approximate 151390000-D by just 151390000  because  
D <<< 151 million km!. 
 
 

For D=372,000 km, =34 and lat=44.7,  
 
Speed = 9211 (2367)/( 5545+5287) = 2014 km/hr 
 

Speed = 2181 km/hr.  Now multiply by 1/cos() to get ground speed. 
 
2181 / cos(34) = 2630 km/s 
 
Now correct for the solar elevation angle 1/sin(41.6) 
 
2630 /sin(41.6) = 3961 km/hr   this is lower than actual value of 4460 km/hr by 11% 
 
So: 
 
 
 



                                                 (3557 – 1674cos(Lat)) (151390000) 
Speed  =     cos(23)6.61 x10-5 ------------------------------------------------------------------  

                                            ( 378475 – 1.0025D + 6378cos cos() sin(elev) 
 
 
Modeled speed vs actual instantaneous ground speed match each other to better than 
11% accuracy. Note the model is consistently 81% of the actual value. If we add this 
mysterious fudge factor of 1.23, our predicted speeds would all match actual speeds to 
within  1%. 
 
 

           
 
 
 
Our final function for the ground speed of the lunar shadow now looks like this: 
 
 
                                                                 (3557 – 1674cos(Lat)) (151390000) 
Speed  =    1.23 cos(23)6.61 x10-5 -----------------------------------------------------------------  

                                                         ( 378475 – 1.0025D + 6378cos cos() sin(elev) 
 
 
 
Where: 
 
23o is the tilt of the path of totality to local meridian. 
 
Lat =  The latitude of the observer 
 

 =   The angular distance between South Carolina and the observation point along the 
path of totality. 



 
Elev = elevation angle of the sun above the horizon at Totality. 
 
D = distance to the moon in km. 
 
151390000 = distance from center of sun to center of Earth in km 
 
1674 = equatorial rotation speed of Earth in km/h 
 
3557  =   Moon speed – solar – barycenter in km/h 
 
378475 =   comes from R = 696,300 km solar radius, d = 1737 km   lunar radius, 
  151390000 km = earth-sun distance, and   d/(R-d) = 0.0025 
  So (d/R-d) 151390000 = 378475 
 
 
 


